
Reinfecciones de una enfermedad infecciosa sobre
una red regional: el caso de dengue

Jorge X. Velasco-Hernández
Instituto de Matemáticas
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Background

Patch dynamics: colonization-extinction trade-off. Quintaessential
model: Richard Levins.

p′(t) = βp(t)(1− p(t))− εp(t), (1)

I p(t) proportion of occupied patches at time t

I β propagule production rate

I ε extinction rate



Interpretation

Assume no propagule production, only extinction

p′ = −εp, p(0) = p0.



Solution

p(t) = p0e
−εt

Looking at it from another perspective:

p(t)

p0
= e−εt

LHS: proportion of occupied patches remaining after t units of
time. Therefore

1− p(t)

p0
= 1− e−εt = G (t)

proportion of empty patches after t units of time have passed.
F (t) is the distribution function of times before extinction.



Therefore, expected time before extinction (G ′(t) = g(t) = density
function of times before extinction).∫ ∞

0
tg(t)dt =

1

ε
.

On the other hand the colonization term

βp(t)(1− p(t))

is proportional to the variance of the binomial distribution.



Suppose p(t) is very small (initial colonization of a previously
empty habitat). Expand Eq (1):

p′(t) = (β − ε)p(t)− βp(t)2.

then

p′(t) ≈ (β − ε)p(t)

which satisfies p(t) > 0 if and only if β − ε > 0 or equivalently, if

R0 =
β

ε
> 1.



Threshold numbers

R0 : the number of new colonized patches from a small number of
original colonizers in an otherwise empty habitat.

I R0 > 1 successful invasion

I R0 < 1 extinction
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Figure: a) Asymptotic colonization to a positive equilibrium; b)
asymptotic extinction (p = 0)

There are essentially two kinds of equilibrium points: those with
positive proportion of occupied patches, and one with no
colonization, namely the empty habitat (or trivial) equilibrium
point.
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Figure: Different patch arrangements give different forms of the
reproductive number

1. R0 is unique

2. R0 = max{R01,R02}, extinction of species with lower R0j .

3. R0 = max{R01,R02}, coexistence if R0j > 1.

4. R0 ≈ 1
2(R01 + R02).



How to compute the reproductive number

This is a general procedure. In practice, the task can be much
much simpler or much more complicated! There may be many
kinds of colonized patches.

I Set up the model. Roughly, if X denotes the proportion of (all
kinds of) colonized patches then

X ′ = F(X )− V(X )

is the equation that describes the dynamics of patch
colonization (highly non-linear).

I Linearizing around the empty habitat equilibrium point, we
obtain

x ′ = (F − V )x

where now F and V are matrices (linear system).



The number of secondary colonizations produced by a single
colonized patch can be expressed as the product of the expected
duration of the reproductive period and the propagule production
rate.

I As done with the Levins model, taking F = 0, the solution of

x ′ = −Vx , x(0) = x0,

gives the proportion of patches that remain occupied after
time t;

x(t) = e−Vtx0.

I The expected time of patch occupancy is then∫ ∞
0

e−Vtx0dt = V−1x0.



I The (i , j) entry of F , is the rate of secondary colonizations
produced in compartment i by an index case in compartment
j . Hence, the expected number of secondary colonizations
produced by the index case is given by∫ ∞

0
Fe−Vtx0dt = FV−1x0,

where the matrix

FV−1

is the so-called next-generation matrix.

I We have that
R0 = ρ(FV−1)

that is, R0 is the spectral radius of the next-generation matrix.



Bifurcation diagrams

Typical behavior of equilibria as we move R0.
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Atypical behavior of equilibria as we move R0: hysteresis

  

Depends on:

I Deterioration rate φ.

I Propagule production rate of colonizer β.

I Degree of decrease or increase of propagule production in
deteriorated habitat σ.

I Habitat recovery rate θ



Target reproduction numbers

R0 = ρ(K )

Global control of infection/transition process.

K = (kij) next generation matrix; it measures how compartment j
affects compartment i .

Target reproduction number TC , controls only certain
infection/transition terms (Shuai et al., 2013).
K = C + (K − C ) where C target matrix, subject to change;
K − C residual matrix, not subject to change.
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P = T + F nonnegative irreducible population projection matrix
(e.g., a Lefkovitch matrix or a Leslie matrix), with T transition
probabilities, F fertilities.

λ, the population growth rate determines the effort to be used to
scale both transition and fertility matrices to reach the threshold
value of one (crossing from extinction to persistence or from
persistence to extinction).

The controlled population growth rate for the controlled population
matrix 1

λT + 1
λF is one. In contrast, the net reproductive value R0

determines the effort needed to scale only fertility and the resulting
projection matrix T + 1

R0
F has growth rate one.

(Caswell 2001, Cushing and Zhou 1994; Li and Schneider 2002)
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Example (Lewis et al, 2019)

I Scentless chamomile (Matricaria perforata) perennial, three
stages: seed bank (in the ground, 1), rosettes (2), and
flowering plants (3).

I Biological transitions: life-cycle graph or projection matrix.

I In a given year, seeds will remain in the seed bank with
probability a11.

I They will germinate into a rosette with probability a21.

I Germinate into a flower with probability a31.

I They will die with probability 1− a11 − a21 − a31.

I Rosettes into flowers with probability a32, and die with
probability 1− a32.



The flowers contribute to all fecundities as follows.

I In a single year, flowers will produce a13 seed bank seeds per
flower

I will produce a23 rosettes per flower, and will produce a33 new
flowers per flower.

I Then the original flower will die.



Projection matrix for chamomile (de-Camino-Beck and Lewis 2008)

P =

a11 0 a13
a21 0 a23
a31 a32 a33


Controls affecting seed production will reduce a13, a23 and a33.
Controls affecting plant growth will reduce a21, a31 and a32.

I Control of off-spring production. Target matrix C has ai3 > 0
(i = 1, 2, 3) only.

TC =
a33 + a13a31 + a23a32 + a13a32a21 − a11a33 − a11a23a32

1− a11
.

I Control of survival probability at the first stage. Target matrix
C has only a11 > 0, i.e., control of the survival probability of
seeds.

T11 =
a11(1− a33 − a23a32)

1− a33 − a13a31 − a23a32 − a13a32a21
.



A metapopulation model for human mobility and Dengue

Joint work Mayra Nuñez-Lopez and Luis Alarcón.

I Connectivity between population centers and travel are closely
related to the import/export of infectious diseases both in
directly- as well as in vector-transmitted diseases.

I Patterns of human mobility are seasonal.

I Climatic conditions affect transmission since pathogens life
cycles and habitat suitability for vectors, hosts or pathogens
can be significatively modified by it.

We address specifically the reinfection process of whole
geographical regions. In a network, each site can be reinfected
(recolonized) by the movement of infectious individuals from
neighboring patches and the disease in the patch may decline due
to the natural disease life cycle or because of emigration of sick
individuals.



Figure: Dengue in Oaxaca, Chiapas, Veracruz y Guerrero 2002-2009.
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Figure: Network of locations where outbreaks are propagated.



The Model components

I Each location can be in either of two states: S suceptible
(empty of infection) or I (occupied or with sick persons).

I The probability of finding an infected individual in location i
at time t, is pi (t), with i ∈ E = {Chiapas, Guerrero, Oaxaca
and Veracruz}. Therefore, each location at each time t is
with probability 1− pi (t) in state S (without outbreaks), and
with probability pi (t) in state I (with outbreaks).

I Infections are climate sensitive, due to the dependence of the
mosquito life cycle on rain and temperature. Precipitation is
used as a general ”proxy” of an external factor, which changes
the probability of contagion.



I We assume discrete time-steps of size ∆t, ∆t an
epidemiological week.

I Any location in state I recovers and passes to state S with
probability µ (recovery rate), but it is reinfected with
probability ηi (P(t)), where

P(t) = [pChis(t), pGro(t), pOax(t), pVer (t)]

is a vector with entries pi (t) that represent the probability of
outbreaks in location i at time t.

ηi (P(t)) is the probability that in ith location, the number of
outbreaks will increase due to population displacement from the
jth-location with i 6= j ; this probability is affected by climatological
factors (precipitation)



Effective innoculum size

Location i receives, on average from location j , riNj individuals,
where Nj represents the population in location j and ri the fraction
of individuals that moved from j to i in each step of time. In this
migrant population, there are on average riNjpj(t) infected
individuals with i , j ∈ E . Therefore, the effective infective
innoculum size arriving to location i will be given as the sum of

I immigrant individuals that enter that location,

I plus the cases that already exist at that location

I minus the infected individuals leaving i (emmigration), given
by expression

Ti (t) =

∑
j∈E riNjpj(t)aij + pi (t)Ni −

∑
j∈E rjNipi (t)aij∑

j∈E riNjaij + Ni −
∑

j∈E rjNiaij
. (2)



ηi (P(t)) is a function of three factors:

I the probability βi of an individual in location i becoming
infected (the product of the per-contact probability of
infection times the per capita number of contacts per unit
time for each location i);

I the effective infective inoculum size Ti (t),

I average weekly precipitation in location i given by fi (t). Note
that fi (t)βi gives the time-dependent infection rate of location
i .



The model
Our discrete model describes the colonization-extinction of cases
by considering cases moving to location i , those cases that stay in
location i and those that recover in location i :

pi (t + 1) = (1− µ)pi (t) + αi fi (t)βiTi (t)(1− pi (t)). (3)

Figure: Transitions for each node showing the two possible states for each
location, and the transition probabilities between states S and I .



Model parametrization

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 10 20 30 40 50 60 70 80

Precipitation

Chiapas Guerrero Oaxaca Veracruz

Figure: Standardized precipitation data during 2004-2009.



Data on mobility through public transportation in the roads and
highways of Mexico is scarce and very incomplete. We have
information on the total population and the economic status of
each of the Mexican states, thus ri the fraction of individuals that
move to location i can be roughly approximated assuming that
individuals migrate in higher proportions to Veracruz State due to
its economic, political and social characteristics

State ri αi

Chiapas 0.0009 0.680
Guerrero 0.0090 0.790
Oaxaca 0.0010 0.730
Veracruz 0.0100 0.735

Table: Mobility rate ri and precipitation weight of each State.



Figure: Comparative between observed outbreaks and numerical
simulations data for Oaxaca State during 2004-2009 with host mobility.



Figure: Comparative between observed outbreaks and numerical
simulations data for Veracruz State during 2004-2009 with host mobility.



Figure: Comparative between observed outbreaks and numerical
simulations data for Guerrero State during 2004-2009 with host mobility.



Figure: Comparative between observed outbreaks and numerical
simulations data for Chiapas State during 2004-2009 with host mobility.



I Our framework, albeit simple in terms of the actual
population dynamics of Dengue, concentrates on the
movement patters underlying the spread of this disease in a
large region of Southern and Eastern Mexico.

I Ti (t) the effective infective innoculum size represents a local
measure of the population size of infected hosts that arrive at
a given location. This parameter can be interpreted as an
indicator of outbreak risk of location i .

I Regardless of the complexity of Dengue, movement at a
geographical scale is a relatively simple colonization extinction
process taking place in a network that is an spatially extended
system whose dynamics is dependent on its topological
arrangement, and neighborhood interactions.

I During the years covered by our data, the Dengue strains that
have circulated have been mainly Dengue II and I with lower
prevalence of Dengue III and IV. Immunity, therefore, must
play a role in the observed reinfection dynamics.



Conclusions

I Data from SINAVE data base: dengue weekly incidence,
spatially distributed.

I Minimal dengue model for two strains for the evaluation of
vaccination strategies.

I Constructions of incidence networks to approximate mobility
between towns and regions.

I Development of methods for parameter inference and
forecasting.
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